Source code for mriqc.workflows.anatomical.base

# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
# Copyright 2021 The NiPreps Developers <>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
# We support and encourage derived works from this project, please read
# about our expectations at
Anatomical workflow

.. image :: _static/anatomical_workflow_source.svg

The anatomical workflow follows the following steps:

#. Conform (reorientations, revise data types) input data and read
   associated metadata.
#. Skull-stripping (AFNI).
#. Calculate head mask -- :py:func:`headmsk_wf`.
#. Spatial Normalization to MNI (ANTs)
#. Calculate air mask above the nasial-cerebelum plane -- :py:func:`airmsk_wf`.
#. Brain tissue segmentation (FAST).
#. Extraction of IQMs -- :py:func:`compute_iqms`.
#. Individual-reports generation --

This workflow is orchestrated by :py:func:`anat_qc_workflow`.

For the skull-stripping, we use ``afni_wf`` from ``niworkflows.anat.skullstrip``:

.. workflow::

    from niworkflows.anat.skullstrip import afni_wf
    from mriqc.testing import mock_config
    with mock_config():
        wf = afni_wf()

from mriqc import config
from mriqc.interfaces import (
from mriqc.interfaces.reports import AddProvenance
from mriqc.interfaces.datalad import DataladIdentityInterface
from mriqc.messages import BUILDING_WORKFLOW
from mriqc.workflows.utils import get_fwhmx
from mriqc.workflows.anatomical.output import init_anat_report_wf
from nipype.interfaces import utility as niu
from nipype.pipeline import engine as pe

from niworkflows.interfaces.fixes import FixHeaderApplyTransforms as ApplyTransforms
from templateflow.api import get as get_template

[docs]def anat_qc_workflow(name="anatMRIQC"): """ One-subject-one-session-one-run pipeline to extract the NR-IQMs from anatomical images .. workflow:: import os.path as op from mriqc.workflows.anatomical.base import anat_qc_workflow from mriqc.testing import mock_config with mock_config(): wf = anat_qc_workflow() """ from mriqc.workflows.shared import synthstrip_wf dataset = config.workflow.inputs.get("t1w", []) + config.workflow.inputs.get("t2w", []) message = BUILDING_WORKFLOW.format( modality="anatomical", detail=( f"for {len(dataset)} NIfTI files." if len(dataset) > 2 else f"({' and '.join(('<%s>' % v for v in dataset))})." ), ) # Initialize workflow workflow = pe.Workflow(name=name) # Define workflow, inputs and outputs # 0. Get data inputnode = pe.Node(niu.IdentityInterface(fields=["in_file"]), name="inputnode") inputnode.iterables = [("in_file", dataset)] datalad_get = pe.Node( DataladIdentityInterface(fields=["in_file"], dataset_path=config.execution.bids_dir), name="datalad_get", ) outputnode = pe.Node(niu.IdentityInterface(fields=["out_json"]), name="outputnode") # 1. Reorient anatomical image to_ras = pe.Node(ConformImage(check_dtype=False), name="conform") # 2. species specific skull-stripping if config.workflow.species.lower() == "human": skull_stripping = synthstrip_wf(omp_nthreads=config.nipype.omp_nthreads) ss_bias_field = "outputnode.bias_image" else: from nirodents.workflows.brainextraction import init_rodent_brain_extraction_wf skull_stripping = init_rodent_brain_extraction_wf(template_id=config.workflow.template_id) ss_bias_field = "final_n4.bias_image" # 3. Head mask hmsk = headmsk_wf(omp_nthreads=config.nipype.omp_nthreads) # 4. Spatial Normalization, using ANTs norm = spatial_normalization() # 5. Air mask (with and without artifacts) amw = airmsk_wf() # 6. Brain tissue segmentation bts = init_brain_tissue_segmentation() # 7. Compute IQMs iqmswf = compute_iqms() # Reports anat_report_wf = init_anat_report_wf() # Connect all nodes # fmt: off workflow.connect([ (inputnode, datalad_get, [("in_file", "in_file")]), (inputnode, anat_report_wf, [ ("in_file", "inputnode.name_source"), ]), (datalad_get, to_ras, [("in_file", "in_file")]), (datalad_get, iqmswf, [("in_file", "inputnode.in_file")]), (datalad_get, norm, [(("in_file", _get_mod), "inputnode.modality")]), (to_ras, skull_stripping, [("out_file", "inputnode.in_files")]), (skull_stripping, hmsk, [ ("outputnode.out_corrected", "inputnode.in_file"), ("outputnode.out_mask", "inputnode.brainmask"), ]), (skull_stripping, bts, [("outputnode.out_mask", "inputnode.brainmask")]), (skull_stripping, norm, [ ("outputnode.out_corrected", "inputnode.moving_image"), ("outputnode.out_mask", "inputnode.moving_mask")]), (norm, bts, [("outputnode.out_tpms", "inputnode.std_tpms")]), (norm, amw, [ ("outputnode.ind2std_xfm", "inputnode.ind2std_xfm")]), (norm, iqmswf, [ ("outputnode.out_tpms", "inputnode.std_tpms")]), (norm, anat_report_wf, ([ ("outputnode.out_report", "inputnode.mni_report")])), (norm, hmsk, [("outputnode.out_tpms", "inputnode.in_tpms")]), (to_ras, amw, [("out_file", "inputnode.in_file")]), (skull_stripping, amw, [("outputnode.out_mask", "inputnode.in_mask")]), (hmsk, amw, [("outputnode.out_file", "inputnode.head_mask")]), (to_ras, iqmswf, [("out_file", "inputnode.in_ras")]), (skull_stripping, iqmswf, [("outputnode.out_corrected", "inputnode.inu_corrected"), (ss_bias_field, "inputnode.in_inu"), ("outputnode.out_mask", "inputnode.brainmask")]), (amw, iqmswf, [("outputnode.air_mask", "inputnode.airmask"), ("outputnode.hat_mask", "inputnode.hatmask"), ("outputnode.art_mask", "inputnode.artmask"), ("outputnode.rot_mask", "inputnode.rotmask")]), (hmsk, bts, [("outputnode.out_denoised", "inputnode.in_file")]), (bts, iqmswf, [("outputnode.out_segm", "inputnode.segmentation"), ("outputnode.out_pvms", "inputnode.pvms")]), (hmsk, iqmswf, [("outputnode.out_file", "inputnode.headmask")]), (to_ras, anat_report_wf, [("out_file", "inputnode.in_ras")]), (skull_stripping, anat_report_wf, [ ("outputnode.out_corrected", "inputnode.inu_corrected"), ("outputnode.out_mask", "inputnode.brainmask")]), (hmsk, anat_report_wf, [("outputnode.out_file", "inputnode.headmask")]), (amw, anat_report_wf, [ ("outputnode.air_mask", "inputnode.airmask"), ("outputnode.art_mask", "inputnode.artmask"), ("outputnode.rot_mask", "inputnode.rotmask"), ]), (bts, anat_report_wf, [("outputnode.out_segm", "inputnode.segmentation")]), (iqmswf, anat_report_wf, [("outputnode.noisefit", "inputnode.noisefit")]), (iqmswf, anat_report_wf, [("outputnode.out_file", "inputnode.in_iqms")]), (iqmswf, outputnode, [("outputnode.out_file", "out_json")]), ]) # fmt: on # Upload metrics if not config.execution.no_sub: from mriqc.interfaces.webapi import UploadIQMs upldwf = pe.Node( UploadIQMs( endpoint=config.execution.webapi_url, auth_token=config.execution.webapi_token, strict=config.execution.upload_strict, ), name="UploadMetrics", ) # fmt: off workflow.connect([ (iqmswf, upldwf, [("outputnode.out_file", "in_iqms")]), (upldwf, anat_report_wf, [("api_id", "inputnode.api_id")]), ]) # fmt: on return workflow
def spatial_normalization(name="SpatialNormalization"): """Create a simplified workflow to perform fast spatial normalization.""" from niworkflows.interfaces.reportlets.registration import ( SpatialNormalizationRPT as RobustMNINormalization, ) # Have the template id handy tpl_id = config.workflow.template_id # Define workflow interface workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface(fields=["moving_image", "moving_mask", "modality"]), name="inputnode", ) outputnode = pe.Node( niu.IdentityInterface(fields=["out_tpms", "out_report", "ind2std_xfm"]), name="outputnode", ) # Spatial normalization norm = pe.Node( RobustMNINormalization( flavor=["testing", "fast"][config.execution.debug], num_threads=config.nipype.omp_nthreads, float=config.execution.ants_float, template=tpl_id, generate_report=True, ), name="SpatialNormalization", # Request all MultiProc processes when ants_nthreads > n_procs num_threads=config.nipype.omp_nthreads, mem_gb=3, ) if config.workflow.species.lower() == "human": norm.inputs.reference_mask = str( get_template(tpl_id, resolution=2, desc="brain", suffix="mask") ) else: norm.inputs.reference_image = str(get_template(tpl_id, suffix="T2w")) norm.inputs.reference_mask = str(get_template(tpl_id, desc="brain", suffix="mask")[0]) # Project standard TPMs into T1w space tpms_std2t1w = pe.MapNode( ApplyTransforms( dimension=3, default_value=0, interpolation="Gaussian", float=config.execution.ants_float, ), iterfield=["input_image"], name="tpms_std2t1w", ) tpms_std2t1w.inputs.input_image = [ str(p) for p in get_template( config.workflow.template_id, suffix="probseg", resolution=(1 if config.workflow.species.lower() == "human" else None), label=["CSF", "GM", "WM"], ) ] # Project MNI segmentation to T1 space tpms_std2t1w = pe.MapNode( ApplyTransforms( dimension=3, default_value=0, interpolation="Linear", float=config.execution.ants_float, ), iterfield=["input_image"], name="tpms_std2t1w", ) tpms_std2t1w.inputs.input_image = [ str(p) for p in get_template( config.workflow.template_id, suffix="probseg", resolution=(1 if config.workflow.species.lower() == "human" else None), label=["CSF", "GM", "WM"], ) ] # fmt: off workflow.connect([ (inputnode, norm, [("moving_image", "moving_image"), ("moving_mask", "moving_mask"), ("modality", "reference")]), (inputnode, tpms_std2t1w, [("moving_image", "reference_image")]), (norm, tpms_std2t1w, [ ("inverse_composite_transform", "transforms"), ]), (norm, outputnode, [ ("composite_transform", "ind2std_xfm"), ("out_report", "out_report"), ]), (tpms_std2t1w, outputnode, [("output_image", "out_tpms")]), ]) # fmt: on return workflow def init_brain_tissue_segmentation(name="brain_tissue_segmentation"): """ Setup a workflow for brain tissue segmentation. .. workflow:: from mriqc.workflows.anatomical.base import init_brain_tissue_segmentation from mriqc.testing import mock_config with mock_config(): wf = init_brain_tissue_segmentation() """ from nipype.interfaces.ants import Atropos def _format_tpm_names(in_files, fname_string=None): from pathlib import Path import nibabel as nb import glob out_path = Path.cwd().absolute() # copy files to cwd and rename iteratively for count, fname in enumerate(in_files): img = nb.load(fname) extension = "".join(Path(fname).suffixes) out_fname = f"priors_{1 + count:02}{extension}", Path(out_path, out_fname)) if fname_string is None: fname_string = f"priors_%02d{extension}" out_files = [str(prior) for prior in glob.glob(str(Path(out_path, f"priors*{extension}")))] # return path with c-style format string for Atropos file_format = str(Path(out_path, fname_string)) return file_format, out_files workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface(fields=["in_file", "brainmask", "std_tpms"]), name="inputnode", ) outputnode = pe.Node( niu.IdentityInterface(fields=["out_segm", "out_pvms"]), name="outputnode", ) format_tpm_names = pe.Node( niu.Function( input_names=["in_files"], output_names=["file_format"], function=_format_tpm_names, execution={"keep_inputs": True, "remove_unnecessary_outputs": False}, ), name="format_tpm_names", ) segment = pe.Node( Atropos( initialization="PriorProbabilityImages", number_of_tissue_classes=3, prior_weighting=0.1, mrf_radius=[1, 1, 1], mrf_smoothing_factor=0.01, save_posteriors=True, out_classified_image_name="segment.nii.gz", output_posteriors_name_template="segment_%02d.nii.gz", num_threads=config.nipype.omp_nthreads, ), name="segmentation", mem_gb=5, num_threads=config.nipype.omp_nthreads, ) # fmt: off workflow.connect([ (inputnode, segment, [("in_file", "intensity_images"), ("brainmask", "mask_image")]), (inputnode, format_tpm_names, [('std_tpms', 'in_files')]), (format_tpm_names, segment, [(('file_format', _pop), 'prior_image')]), (segment, outputnode, [("classified_image", "out_segm"), ("posteriors", "out_pvms")]), ]) # fmt: on return workflow def compute_iqms(name="ComputeIQMs"): """ Setup the workflow that actually computes the IQMs. .. workflow:: from mriqc.workflows.anatomical.base import compute_iqms from mriqc.testing import mock_config with mock_config(): wf = compute_iqms() """ from niworkflows.interfaces.bids import ReadSidecarJSON from mriqc.interfaces.anatomical import Harmonize from mriqc.workflows.utils import _tofloat workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface( fields=[ "in_file", "in_ras", "brainmask", "airmask", "artmask", "headmask", "rotmask", "hatmask", "segmentation", "inu_corrected", "in_inu", "pvms", "metadata", "std_tpms", ] ), name="inputnode", ) outputnode = pe.Node( niu.IdentityInterface(fields=["out_file", "noisefit"]), name="outputnode", ) # Extract metadata meta = pe.Node(ReadSidecarJSON(index_db=config.execution.bids_database_dir), name="metadata") # Add provenance addprov = pe.Node(AddProvenance(), name="provenance", run_without_submitting=True) # AFNI check smoothing fwhm_interface = get_fwhmx() fwhm = pe.Node(fwhm_interface, name="smoothness") # Harmonize homog = pe.Node(Harmonize(), name="harmonize") if config.workflow.species.lower() != "human": homog.inputs.erodemsk = False homog.inputs.thresh = 0.8 # Mortamet's QI2 getqi2 = pe.Node(ComputeQI2(), name="ComputeQI2") # Compute python-coded measures measures = pe.Node(StructuralQC(human=config.workflow.species.lower() == "human"), "measures") datasink = pe.Node( IQMFileSink( out_dir=config.execution.output_dir, dataset=config.execution.dsname, ), name="datasink", run_without_submitting=True, ) def _getwm(inlist): return inlist[-1] # fmt: off workflow.connect([ (inputnode, meta, [("in_file", "in_file")]), (inputnode, datasink, [("in_file", "in_file"), (("in_file", _get_mod), "modality")]), (inputnode, addprov, [(("in_file", _get_mod), "modality")]), (meta, datasink, [("subject", "subject_id"), ("session", "session_id"), ("task", "task_id"), ("acquisition", "acq_id"), ("reconstruction", "rec_id"), ("run", "run_id"), ("out_dict", "metadata")]), (inputnode, addprov, [("in_file", "in_file"), ("airmask", "air_msk"), ("rotmask", "rot_msk")]), (inputnode, getqi2, [("in_ras", "in_file"), ("hatmask", "air_msk")]), (inputnode, homog, [("inu_corrected", "in_file"), (("pvms", _getwm), "wm_mask")]), (inputnode, measures, [("in_inu", "in_bias"), ("in_ras", "in_file"), ("airmask", "air_msk"), ("headmask", "head_msk"), ("artmask", "artifact_msk"), ("rotmask", "rot_msk"), ("segmentation", "in_segm"), ("pvms", "in_pvms"), ("std_tpms", "mni_tpms")]), (inputnode, fwhm, [("in_ras", "in_file"), ("brainmask", "mask")]), (homog, measures, [("out_file", "in_noinu")]), (fwhm, measures, [(("fwhm", _tofloat), "in_fwhm")]), (measures, datasink, [("out_qc", "root")]), (addprov, datasink, [("out_prov", "provenance")]), (getqi2, datasink, [("qi2", "qi_2")]), (getqi2, outputnode, [("out_file", "noisefit")]), (datasink, outputnode, [("out_file", "out_file")]), ]) # fmt: on return workflow def headmsk_wf(name="HeadMaskWorkflow", omp_nthreads=1): """ Computes a head mask as in [Mortamet2009]_. .. workflow:: from mriqc.testing import mock_config from mriqc.workflows.anatomical.base import headmsk_wf with mock_config(): wf = headmsk_wf() """ from niworkflows.interfaces.nibabel import ApplyMask workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface(fields=["in_file", "brainmask", "in_tpms"]), name="inputnode" ) outputnode = pe.Node( niu.IdentityInterface(fields=["out_file", "out_denoised"]), name="outputnode" ) def _select_wm(inlist): return [f for f in inlist if "WM" in f][0] enhance = pe.Node( niu.Function( input_names=["in_file", "wm_tpm"], output_names=["out_file"], function=_enhance, ), name="Enhance", num_threads=omp_nthreads, ) gradient = pe.Node( niu.Function( input_names=["in_file", "brainmask", "sigma"], output_names=["out_file"], function=image_gradient, ), name="Grad", num_threads=omp_nthreads, ) thresh = pe.Node( niu.Function( input_names=["in_file", "brainmask", "aniso", "thresh"], output_names=["out_file"], function=gradient_threshold, ), name="GradientThreshold", num_threads=omp_nthreads, ) if config.workflow.species != "human": gradient.inputs.sigma = 3.0 thresh.inputs.aniso = True thresh.inputs.thresh = 4.0 apply_mask = pe.Node(ApplyMask(), name="apply_mask") # fmt: off workflow.connect([ (inputnode, enhance, [("in_file", "in_file"), (("in_tpms", _select_wm), "wm_tpm")]), (inputnode, thresh, [("brainmask", "brainmask")]), (inputnode, gradient, [("brainmask", "brainmask")]), (inputnode, apply_mask, [("brainmask", "in_mask")]), (enhance, gradient, [("out_file", "in_file")]), (gradient, thresh, [("out_file", "in_file")]), (enhance, apply_mask, [("out_file", "in_file")]), (thresh, outputnode, [("out_file", "out_file")]), (apply_mask, outputnode, [("out_file", "out_denoised")]), ]) # fmt: on return workflow def airmsk_wf(name="AirMaskWorkflow"): """ Calculate air, artifacts and "hat" masks to evaluate noise in the background. This workflow mostly addresses the implementation of Step 1 in [Mortamet2009]_. This work proposes to look at the signal distribution in the background, where no signals are expected, to evaluate the spread of the noise. It is in the background where [Mortamet2009]_ proposed to also look at the presence of ghosts and artifacts, where they are very easy to isolate. However, [Mortamet2009]_ proposes not to look at the background around the face because of the likely signal leakage through the phase-encoding axis sourcing from eyeballs (and their motion). To avoid that, [Mortamet2009]_ proposed atlas-based identification of two landmarks (nasion and cerebellar projection on to the occipital bone). MRIQC, for simplicity, used a such a mask created in MNI152NLin2009cAsym space and projected it on to the individual. Such a solution is inadequate because it doesn't drop full in-plane slices as there will be a large rotation of the individual's tilt of the head with respect to the template. The new implementation (23.1.x series) follows [Mortamet2009]_ more closely, projecting the two landmarks from the template space and leveraging *NiTransforms* to do that. .. workflow:: from mriqc.testing import mock_config from mriqc.workflows.anatomical.base import airmsk_wf with mock_config(): wf = airmsk_wf() """ workflow = pe.Workflow(name=name) inputnode = pe.Node( niu.IdentityInterface( fields=[ "in_file", "in_mask", "head_mask", "ind2std_xfm", ] ), name="inputnode", ) outputnode = pe.Node( niu.IdentityInterface(fields=["hat_mask", "air_mask", "art_mask", "rot_mask"]), name="outputnode", ) rotmsk = pe.Node(RotationMask(), name="RotationMask") qi1 = pe.Node(ArtifactMask(), name="ArtifactMask") # fmt: off workflow.connect([ (inputnode, rotmsk, [("in_file", "in_file")]), (inputnode, qi1, [("in_file", "in_file"), ("head_mask", "head_mask"), ("ind2std_xfm", "ind2std_xfm")]), (qi1, outputnode, [("out_hat_msk", "hat_mask"), ("out_air_msk", "air_mask"), ("out_art_msk", "art_mask")]), (rotmsk, outputnode, [("out_file", "rot_mask")]) ]) # fmt: on return workflow def _binarize(in_file, threshold=0.5, out_file=None): import os.path as op import nibabel as nb import numpy as np if out_file is None: fname, ext = op.splitext(op.basename(in_file)) if ext == ".gz": fname, ext2 = op.splitext(fname) ext = ext2 + ext out_file = op.abspath(f"{fname}_bin{ext}") nii = nb.load(in_file) data = nii.get_fdata() > threshold hdr = nii.header.copy() hdr.set_data_dtype(np.uint8) nb.Nifti1Image(data.astype(np.uint8), nii.affine, hdr).to_filename(out_file) return out_file def _enhance(in_file, wm_tpm, out_file=None): import numpy as np import nibabel as nb from mriqc.workflows.utils import generate_filename imnii = nb.load(in_file) data = imnii.get_fdata(dtype=np.float32) range_max = np.percentile(data[data > 0], 99.98) excess = data > range_max wm_prob = nb.load(wm_tpm).get_fdata() wm_prob[wm_prob < 0] = 0 # Ensure no negative values wm_prob[excess] = 0 # Ensure no outliers are considered # Calculate weighted mean and standard deviation wm_mu = np.average(data, weights=wm_prob) wm_sigma = np.sqrt(np.average((data - wm_mu) ** 2, weights=wm_prob)) # Resample signal excess pixels data[excess] = np.random.normal(loc=wm_mu, scale=wm_sigma, size=excess.sum()) out_file = out_file or str(generate_filename(in_file, suffix="enhanced").absolute()) nb.Nifti1Image(data, imnii.affine, imnii.header).to_filename(out_file) return out_file def image_gradient(in_file, brainmask, sigma=4.0, out_file=None): """Computes the magnitude gradient of an image using numpy""" import nibabel as nb import numpy as np from scipy.ndimage import gaussian_gradient_magnitude as gradient from mriqc.workflows.utils import generate_filename imnii = nb.load(in_file) mask = np.bool_(nb.load(brainmask).dataobj) data = imnii.get_fdata(dtype=np.float32) datamax = np.percentile(data.reshape(-1), 99.5) data *= 100 / datamax data[mask] = 100 zooms = np.array(imnii.header.get_zooms()[:3]) sigma_xyz = 2 - zooms / min(zooms) grad = gradient(data, sigma * sigma_xyz) gradmax = np.percentile(grad.reshape(-1), 99.5) grad *= 100.0 grad /= gradmax grad[mask] = 100 out_file = out_file or str(generate_filename(in_file, suffix="grad").absolute()) nb.Nifti1Image(grad, imnii.affine, imnii.header).to_filename(out_file) return out_file def gradient_threshold(in_file, brainmask, thresh=15.0, out_file=None, aniso=False): """Compute a threshold from the histogram of the magnitude gradient image""" import nibabel as nb import numpy as np from scipy import ndimage as sim from mriqc.workflows.utils import generate_filename if not aniso: struct = sim.iterate_structure(sim.generate_binary_structure(3, 2), 2) else: # Generate an anisotropic binary structure, taking into account slice thickness img = nb.load(in_file) zooms = img.header.get_zooms() dist = max(zooms) dim = img.header["dim"][0] x = np.ones((5) * np.ones(dim, dtype=np.int8)) np.put(x, x.size // 2, 0) dist_matrix = np.round(sim.distance_transform_edt(x, sampling=zooms), 5) struct = dist_matrix <= dist imnii = nb.load(in_file) hdr = imnii.header.copy() hdr.set_data_dtype(np.uint8) data = imnii.get_fdata(dtype=np.float32) mask = np.zeros_like(data, dtype=np.uint8) mask[data > thresh] = 1 mask = sim.binary_closing(mask, struct, iterations=2).astype(np.uint8) mask = sim.binary_erosion(mask, sim.generate_binary_structure(3, 2)).astype(np.uint8) segdata = np.asanyarray(nb.load(brainmask).dataobj) > 0 segdata = sim.binary_dilation(segdata, struct, iterations=2, border_value=1).astype(np.uint8) mask[segdata] = 1 # Remove small objects label_im, nb_labels = sim.label(mask) artmsk = np.zeros_like(mask) if nb_labels > 2: sizes = sim.sum(mask, label_im, list(range(nb_labels + 1))) ordered = list(reversed(sorted(zip(sizes, list(range(nb_labels + 1)))))) for _, label in ordered[2:]: mask[label_im == label] = 0 artmsk[label_im == label] = 1 mask = sim.binary_fill_holes(mask, struct).astype(np.uint8) # pylint: disable=no-member out_file = out_file or str(generate_filename(in_file, suffix="gradmask").absolute()) nb.Nifti1Image(mask, imnii.affine, hdr).to_filename(out_file) return out_file def _get_imgtype(in_file): from pathlib import Path return int(Path(in_file).name.rstrip(".gz").rstrip(".nii").split("_")[-1][1]) def _get_mod(in_file): from pathlib import Path return Path(in_file).name.rstrip(".gz").rstrip(".nii").split("_")[-1] def _pop(inlist): if isinstance(inlist, (list, tuple)): return inlist[0] return inlist